Os meus intentos:
-
Non puiden obter os intervalos de confianza en
interaction.plot()
e por outra banda,
plotmeans()
do paquete ‘gplot’ Non mostrar dous gráficos .. Ademais, non puiden impoñer dous gráficosplotmeans()
dun dos outros, xa que por defecto, o eixe son diferentes. -
El tiven algún éxito usando
plotCI()
do paquete ‘gplot’ e a superposición de dous gráficos, pero aínda o combate de eixe non era perfecto.
Calquera consello sobre como facer unha interacción de trama con intervalos de confianza? Ou para unha función ou consellos sobre como superimir plotmeans()
ou plotCI()
.
Exemplo de código
br=structure(list(tangle = c(140L, 50L, 40L, 140L, 90L, 70L, 110L, 150L, 150L, 110L, 110L, 50L, 90L, 140L, 110L, 50L, 60L, 40L, 40L, 130L, 120L, 140L, 70L, 50L, 140L, 120L, 130L, 50L, 40L, 80L, 140L, 100L, 60L, 70L, 50L, 60L, 60L, 130L, 40L, 130L, 100L, 70L, 110L, 80L, 120L, 110L, 40L, 100L, 40L, 60L, 120L, 120L, 70L, 80L, 130L, 60L, 100L, 100L, 60L, 70L, 90L, 100L, 140L, 70L, 100L, 90L, 130L, 70L, 130L, 40L, 80L, 130L, 150L, 110L, 120L, 140L, 90L, 60L, 90L, 80L, 120L, 150L, 90L, 150L, 50L, 50L, 100L, 150L, 80L, 90L, 110L, 150L, 150L, 120L, 80L, 80L), gtangles = c(141L, 58L, 44L, 154L, 120L, 90L, 128L, 147L, 147L, 120L, 127L, 66L, 118L, 141L, 111L, 59L, 72L, 45L, 52L, 144L, 139L, 143L, 73L, 59L, 148L, 141L, 135L, 63L, 51L, 88L, 147L, 110L, 68L, 78L, 63L, 64L, 70L, 133L, 49L, 129L, 100L, 78L, 128L, 91L, 121L, 109L, 48L, 113L, 50L, 68L, 135L, 120L, 85L, 97L, 136L, 59L, 112L, 103L, 62L, 87L, 92L, 116L, 141L, 70L, 121L, 92L, 137L, 85L, 117L, 51L, 84L, 128L, 162L, 102L, 127L, 151L, 115L, 57L, 93L, 92L, 117L, 140L, 95L, 159L, 57L, 65L, 130L, 152L, 90L, 117L, 116L, 147L, 140L, 116L, 98L, 95L), up = c(-1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, -1L, -1L, 1L, 1L, 1L, 1L, -1L, -1L, -1L, -1L, 1L, 1L, -1L, -1L, 1L, 1L, -1L, 1L, 1L, -1L, 1L, 1L, 1L, 1L, 1L, -1L, -1L, 1L, 1L, 1L, 1L, -1L, -1L, 1L, 1L, -1L, -1L, -1L, -1L, -1L, -1L, -1L, 1L, -1L, -1L, -1L, -1L, -1L, 1L, -1L, 1L, 1L, -1L, -1L, -1L, -1L, 1L, -1L, 1L, -1L, -1L, -1L, 1L, -1L, 1L, -1L, 1L, 1L, 1L, -1L, -1L, -1L, -1L, -1L, -1L, 1L, -1L, 1L, 1L, -1L, -1L, 1L, 1L, 1L, -1L, 1L, 1L, 1L)), .Names = c("tangle", "gtangles", "up"), class = "data.frame", row.names = c(NA, -96L))plotmeans2 <- function(br, alph) {dt=br; tmp <- split(br$gtangles, br$tangle); means <- sapply(tmp, mean); stdev <- sqrt(sapply(tmp, var)); n <- sapply(tmp,length); ciw <- qt(alph, n) * stdev / sqrt(n)plotCI(x=means, uiw=ciw, col="black", barcol="blue", lwd=1,ylim=c(40,150), xlim=c(1,12)); par(new=TRUE) dt= subset(br,up==1); tmp <- split(dt$gtangles, dt$tangle); means <- sapply(tmp, mean); stdev <- sqrt(sapply(tmp, var)); n <- sapply(tmp,length); ciw <- qt(0.95, n) * stdev / sqrt(n)plotCI(x=means, uiw=ciw, type='l',col="black", barcol="red", lwd=1,ylim=c(40,150), xlim=c(1,12),pch='+');abline(v=6);abline(h=90);abline(30,10); par(new=TRUE);dt=subset(br,up==-1); tmp <- split(dt$gtangles, dt$tangle); means <- sapply(tmp, mean); stdev <- sqrt(sapply(tmp, var)); n <- sapply(tmp,length); ciw <- qt(0.95, n) * stdev / sqrt(n)plotCI(x=means, uiw=ciw, type='l', col="black", barcol="blue", lwd=1,ylim=c(40,150), xlim=c(1,12),pch='-');abline(v=6);abline(h=90);abline(30,10);}plotmeans2(br,.95)