Mes tentatives:
-
Je n’ai pas pu obtenir les intervalles de confiance dans
interaction.plot()
-
et d’autre part,
plotmeans()
du paquet » gplot « ne montre pas deux graphiques . De plus, je ne pouvais pas imposer deuxplotmeans()
graphiques d’un sur l’autre, car par défaut, l’axe est différent. -
Il j’ai eu un certain succès en utilisant
plotCI()
du package « gplot » et la superposition de deux graphiques, mais toujours le match d’essieu n’était pas parfait.
des conseils sur la manière de faire une interaction de la parcelle avec des intervalles de confiance? Soit pour une fonction, ou des conseils sur la superposition de plotmeans()
ou plotCI()
graphiques.
Exemple de code
br=structure(list(tangle = c(140L, 50L, 40L, 140L, 90L, 70L, 110L, 150L, 150L, 110L, 110L, 50L, 90L, 140L, 110L, 50L, 60L, 40L, 40L, 130L, 120L, 140L, 70L, 50L, 140L, 120L, 130L, 50L, 40L, 80L, 140L, 100L, 60L, 70L, 50L, 60L, 60L, 130L, 40L, 130L, 100L, 70L, 110L, 80L, 120L, 110L, 40L, 100L, 40L, 60L, 120L, 120L, 70L, 80L, 130L, 60L, 100L, 100L, 60L, 70L, 90L, 100L, 140L, 70L, 100L, 90L, 130L, 70L, 130L, 40L, 80L, 130L, 150L, 110L, 120L, 140L, 90L, 60L, 90L, 80L, 120L, 150L, 90L, 150L, 50L, 50L, 100L, 150L, 80L, 90L, 110L, 150L, 150L, 120L, 80L, 80L), gtangles = c(141L, 58L, 44L, 154L, 120L, 90L, 128L, 147L, 147L, 120L, 127L, 66L, 118L, 141L, 111L, 59L, 72L, 45L, 52L, 144L, 139L, 143L, 73L, 59L, 148L, 141L, 135L, 63L, 51L, 88L, 147L, 110L, 68L, 78L, 63L, 64L, 70L, 133L, 49L, 129L, 100L, 78L, 128L, 91L, 121L, 109L, 48L, 113L, 50L, 68L, 135L, 120L, 85L, 97L, 136L, 59L, 112L, 103L, 62L, 87L, 92L, 116L, 141L, 70L, 121L, 92L, 137L, 85L, 117L, 51L, 84L, 128L, 162L, 102L, 127L, 151L, 115L, 57L, 93L, 92L, 117L, 140L, 95L, 159L, 57L, 65L, 130L, 152L, 90L, 117L, 116L, 147L, 140L, 116L, 98L, 95L), up = c(-1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, -1L, -1L, 1L, 1L, 1L, 1L, -1L, -1L, -1L, -1L, 1L, 1L, -1L, -1L, 1L, 1L, -1L, 1L, 1L, -1L, 1L, 1L, 1L, 1L, 1L, -1L, -1L, 1L, 1L, 1L, 1L, -1L, -1L, 1L, 1L, -1L, -1L, -1L, -1L, -1L, -1L, -1L, 1L, -1L, -1L, -1L, -1L, -1L, 1L, -1L, 1L, 1L, -1L, -1L, -1L, -1L, 1L, -1L, 1L, -1L, -1L, -1L, 1L, -1L, 1L, -1L, 1L, 1L, 1L, -1L, -1L, -1L, -1L, -1L, -1L, 1L, -1L, 1L, 1L, -1L, -1L, 1L, 1L, 1L, -1L, 1L, 1L, 1L)), .Names = c("tangle", "gtangles", "up"), class = "data.frame", row.names = c(NA, -96L))plotmeans2 <- function(br, alph) {dt=br; tmp <- split(br$gtangles, br$tangle); means <- sapply(tmp, mean); stdev <- sqrt(sapply(tmp, var)); n <- sapply(tmp,length); ciw <- qt(alph, n) * stdev / sqrt(n)plotCI(x=means, uiw=ciw, col="black", barcol="blue", lwd=1,ylim=c(40,150), xlim=c(1,12)); par(new=TRUE) dt= subset(br,up==1); tmp <- split(dt$gtangles, dt$tangle); means <- sapply(tmp, mean); stdev <- sqrt(sapply(tmp, var)); n <- sapply(tmp,length); ciw <- qt(0.95, n) * stdev / sqrt(n)plotCI(x=means, uiw=ciw, type='l',col="black", barcol="red", lwd=1,ylim=c(40,150), xlim=c(1,12),pch='+');abline(v=6);abline(h=90);abline(30,10); par(new=TRUE);dt=subset(br,up==-1); tmp <- split(dt$gtangles, dt$tangle); means <- sapply(tmp, mean); stdev <- sqrt(sapply(tmp, var)); n <- sapply(tmp,length); ciw <- qt(0.95, n) * stdev / sqrt(n)plotCI(x=means, uiw=ciw, type='l', col="black", barcol="blue", lwd=1,ylim=c(40,150), xlim=c(1,12),pch='-');abline(v=6);abline(h=90);abline(30,10);}plotmeans2(br,.95)